ライトプレーン改造計画2

浜松市立神久呂小学校 6年 小笠原 裕真

1 動機

<昨年度の研究について>

昨年度は、ライトプレーンを「どうすればもっと安定して、長く飛ばすことができる」のか調べました。そして、主翼のはたらきに注目して研究を行いました。

昨年度の研究で、次のようなことが分かりました。

実験から分かったこと

折り込みは、前より後ろの方が浮き上がる力が生まれやすいこと。そして、前後に折り込みを入れると、 一層浮き上がる力が生まれることが分かりました。

昨年の実験の最後に、主翼を改造したライトプレーンをゴム動力で飛ばしてみました。すると、どれも無改造よりも軽く飛ぶ印象があり、静かに前へ進みながら上昇したり、水平に飛んだりして、1つ1つに個性がありました。ぼくは、どの機体の飛び方も楽しむことができました。

その中から、確かめてみたいと思ったものは、次のとおりです。

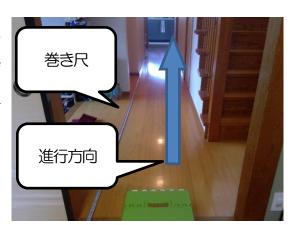
- ①主翼の折り込みをもっと深くしたらどうか。
- ②主翼の端まで水平に伸ばして、端まで折り込みを入れてみたらどうか。
- ③主翼の端まで折り込みを入れ、主翼の端も折り曲げたらどうか。

このように、前回作った3つのライトプレーンを基に、少しずつ条件を変えながら、折り曲げと飛び方の関係について比べていきました。この研究を通して、水平に飛ぶプレーンや高く上昇するプレーンなど、イメージ通りのプレーンを作れたらいいなと思います。

2 方法

ライトプレーンは、手で巻いたゴムの力で飛びます。巻いたゴムのもどる力でプロペラが回り、その回転する力を利用して飛んでいきます。

ライトプレーンは、次のようなパーツでできています。


本研究のねらい

主翼にさまざな折り込みを入れ、進み方や浮き上がり方の変化を調べ、より安定して遠くまで飛ば すためには、どのような主翼の形がよいのか確かめる。

(1) 研究方法

	研究内容 (変える条件)
①12タイプの折り込みによっ	A 主翼の中央部(前・後・前後)に1cmの折り込みを入れ、
て、飛距離と挙動はどう違うの	主翼の両端を曲げる。
か。	B 主翼の中央部(前・後・前後)に2cmの折り込みを入れ、
	主翼の両端を曲げる。
	C 主翼の両端(前・後・前後)まで1cmの折り込みを入れる。
	D 主翼の両端(前・後・前後)まで1cmの折り込みを入れ、
	主翼の両端を曲げる。
②測定した12タイプの折れ込	・A~Dの前の折り込みを入れたプレーンの性能を比べる。
みの部分が同じものどうしの飛	・A~Dの後の折り込みを入れたプレーンの性能を比べる。
距離はどう変わるか。	・A~Dの前後の折り込みを入れたプレーンの性能を比べる。
③主翼の形状によって、飛距離は	・AとBについての比較。
どう変わるか。	・AとDについての比較。
	・CとDについての比較。
④12タイプのプレーンを総合	・12タイプのプレーン(動力あり無し)を飛ばし、その挙動や安定性
的に比べると、どの改造が効果的	についての比較をする。
なのか。	・動力あり、無しとの結果を総合的にまとめ、「水平に飛ばす」「上昇さ
	せる」のに適した加工を見つける。

まず、それぞれの形の主翼を作成し、飛行実験を行います。 それらをゴム動力無しで、無風の我が家の廊下で繰り返し飛行させて、その飛距離と挙動について記録していきます。繰り返し飛ばしながら、きちんと飛行した10回分を記録として残し、その飛距離や挙動から、主翼の折り込みの効果を考えていきます。

3 課題

(1) 課題1 12タイプの折り込みによって飛距離と挙動はどう違うのか。

【方法】

昨年度の研究結果をふまえて、プレーンの主翼に12タイプ (昨年度のもの3タイプ+今年度のもの9タイプ) を作りました。

【考察:飛距離と安定感について】

A 主翼の中央部 (前・後・前後) に1cmの 折り込みを入れ、主翼の両端を曲げる。

	A 1cm折れと端折れ					
cm	①前	②後	③前後			
1回目	280	273	337			
2回目	277	261	372			
3回目	215	400	248			
4 回目	396	340	306			
5回目	365	256	372			
6回目	391	366	353			
7回目	358	292	349			
8回目	205	303	288			
9回目	330	280	290			
10回目	270	351	417			
平均	308.7	312.2	333.2			
最大値	396	400	417			
最小値	205	256	248			
最大値一最小値	191	144	169			

C 主翼の両端 (前・後・前後) まで1cmの 折り込みを入れる。

	С	端まで1c	m
cm	⑦前	8後	⑨前後
1回目	428	296	455
2回目	393	298	414
3回目	384	340	410
4 回目	251	400	463
5回目	254	354	443
6 回目	382	232	384
7回目	365	312	460
8回目	337	453	471
9回目	271	542	394
10回目	394	481	397
平均	345.9	370.8	429.1
最大値	428	542	471
最小値	251	232	384
最大値一最小値	177	310	87

B 主翼の中央部 (前・後・前後) に2cmの 折り込みを入れ、主翼の両端を曲げる。

	B 2	cm折れと端	岩折れ
cm	④前	⑤後	⑥前後
1回目	367	357	252
2回目	321	294	350
3回目	374	450	404
4 回目	273	390	382
5 回目	262	394	326
6回目	251	300	335
7回目	468	251	307
8回目	342	364	323
9回目	449	413	394
10回目	394	413	324
平均	350.1	362.6	339.7
最大値	468	450	404
最小値	251	251	252
最大値一最小値	217	199	152

D 主翼の両端(前・後・前後)まで1cmの 折り込みを入れ、主翼の両端を曲げる。

	D 端	D 端まで1cmと端折れ						
cm	10前	①後	22前後					
1回目	210	448	373					
2回目	360	394	411					
3回目	306	415	359					
4 回目	337	414	395					
5 回目	403	314	332					
6回目	297	338	309					
7回目	380	291	380					
8回目	323	384	368					
9回目	247	380	310					
10回目	364	415	280					
平均	322.7	379.3	351.7					
最大値	403	448	411					
最小値	210	291	280					
最大値一最小値	193	157	131					

- ・昨年度と同じように、どのタイプでも、折り込みは前よりも後ろの方が揚力が生まれやすい。後ろと前後では、飛距離の差は違いが出づらいが、前後の方が安定感は増している。
- ・前後の折り込みの方が、前後どちらかに折り込みよりも揚力が生まれやすい。
- ・折り込みの面積を大きくすると揚力が生まれやすいが、ある程度を超えると、空気抵抗が大きくなり、飛 距離が伸びなくなる。
- (2) 課題2 折れ込みの部分が同じものどうしの飛距離はどう変わるか。
- 【方法】 測定した12タイプの折れ込みの部分が同じものどうしの飛距離はどう変わるか、実験結果から比べ、その効果を考える。

【結果】

前に折り込みを入れた①、④、⑦、⑩

	1 cm+端	2 cm+端	端まで1cm	端まで1cm+端
cm	①前	④前	⑦前	⑩前
1回目	280	367	428	210
2回目	277	321	393	360
3回目	215	374	384	306
4回目	396	273	251	337
5回目	365	262	254	403
6回目	391	251	382	297
7回目	358	468	365	380
8回目	205	342	337	323
9回目	330	449	271	247
10回目	270	394	394	364
平均	308.7	350.1	345.9	322.7
最大値	396	468	428	403
最小値	205	251	251	210
最大値一最小値	191	217	177	193

後ろに折り込みを入れた②、⑤、⑧、⑪

			ı	ı
	1 cm + 端	2 cm+端	端まで1cm	端まで1cm+端
cm	②後	⑤後	8後	11)後
1回目	273	357	296	448
2回目	261	294	298	394
3回目	400	450	340	415
4 回目	340	390	400	414
5回目	256	394	354	314
6回目	366	300	232	338
7回目	292	251	312	291
8回目	303	364	453	384
9回目	280	413	542	380
10回目	351	413	481	415
平均	312.2	362.6	370.8	379.3
最大値	400	450	542	448
最小値	256	251	232	291
最大値一最小値	144	199	310	157

前後に折り込みを入れた③、⑥、⑨、⑫

	1 cm + 端	2 cm+端	端まで1cm	端まで1cm+端
cm	③前後	⑥前後	⑨前後	⑫前後
1回目	337	252	455	373
2回目	372	350	414	411
3回目	248	404	410	359
4 回目	306	382	463	395
5回目	372	326	443	332
6回目	353	335	384	309
7回目	349	307	460	380
8回目	288	323	471	368
9回目	290	394	394	310
10回目	417	324	397	280
平均	333.2	339.7	429.1	351.7
最大値	417	404	471	411
最小値	248	252	384	280
最大値一最小値	169	152	87	131

- ・折り込み部分をまとめて比べてみても、前よりも後ろ、片方よりも前後の方が揚力が生まれやすく、飛距離が伸びやすい。
- ・一部に大きな折り込みを入れるよりも、全体に細く折り込みを入れる方が、安定感も高まり、飛距離も伸ばせる。
- ・折り込みを前後にして面積を大きくすると揚力が生まれやすいが、さらに両端を折ってしまうと空気抵抗 が増えてしまい、飛距離が伸びなくなる。
 - (3) 課題3 主翼の形状によって、飛距離はどう変わるか。

A 1cm折れと端折れ B 2cm折れと端折れ

【方法】 測定した12タイプの折れ込みの部分が同じものどうしの飛距離はどう変わるか、実験結果から比べ、その効果を考える。

実験AとBについての比較。

cm	①前	②後	③前後	4前	⑤後	⑥前後
1回目	280	273	337	367	357	252
2回目	277	261	372	321	294	350
3回目	215	400	248	374	450	404
4回目	396	340	306	273	390	382
5回目	365	256	372	262	394	326
6回目	391	366	353	251	300	335
7回目	358	292	349	468	251	307
8回目	205	303	288	342	364	323
9回目	330	280	290	449	413	394
10回目	270	351	417	394	413	324
平均	308.7	312.2	333.2	350.1	362.6	339.7

417

248

169

468

251

217

450

251

199

404

252

152

実験AとDについての比較。

	A 1	cm折れと端		D 端まで1cmと端折れ			
cm	①前	②後	③前後	⑩前	11)後	迎前後	
1回目	280	273	337	210	448	373	
2回目	277	261	372	360	394	411	
3回目	215	400	248	306	415	359	
4回目	396	340	306	337	414	395	
5回目	365	256	372	403	314	332	
6回目	391	366	353	297	338	309	
7回目	358	292	349	380	291	380	
8回目	205	303	288	323	384	368	
9回目	330	280	290	247	380	310	
10回目	270	351	417	364	415	280	
平均	308.7	312.2	333.2	322.7	379.3	351.7	
最大値	396	400	417	403	448	411	
最小値	205	256	248	210	291	280	
最大値一最小値	191	144	169	193	157	131	

実験CとDについての比較。

400

256

144

396

205

最大値最小値

最大値一最小値 191

	С	端まで1c	m	D 端まで1cmと端折れ			
cm	⑦前	8後	⑨前後	⑩前	11)後	迎前後	
1回目	428	296	455	210	448	373	
2回目	393	298	414	360	394	411	
3回目	384	340	410	306	415	359	
4回目	251	400	463	337	414	395	
5回目	254	354	443	403	314	332	
6回目	382	232	384	297	338	309	
7回目	365	312	460	380	291	380	
8回目	337	453	471	323	384	368	
9回目	271	542	394	247	380	310	
10回目	394	481	397	364	415	280	
平均	345.9	370.8	429.1	322.7	379.3	351.7	
最大値	428	542	471	403	448	411	
最小値	251	232	384	210	291	280	
最大値一最小値	177	310	87	193	157	131	

- ・折り込みを1 cm から2 cm に面積を増やすと、揚力が大きくなり、飛距離が伸びますが、その代わりに安定性は低くなる。
- ・1 cm の折れ込みを中央だけでなく、端まで伸ばして加工すると、揚力が高くなって飛距離がぐんと伸びるが、空気抵抗が増えるためか、安定性が少し落ちて飛距離にバラつきがわずかに出る。
- ・主翼の両端まで $1 \, \mathrm{cm}$ の折り込みを入れた場合、主翼の端を折らないようにした方が、飛距離も伸びて、安定性も高まる。

【考察】課題1,2,3の内容から、効果的な改造を総合的に考える。

ここまでの課題1、課題2、課題3の内容から、ゴム動力無しの状態での12タイプの飛距離や安定性、挙動を総合的に比較して、効果的な改造を比較する。

これまでのことから・・・

- ① 主翼への折り込みによって生まれる揚力の大きさは 前 < 後ろ < 前後
- ② 折り込みを入れる位置によって生まれる揚力の大きさは 中央部のみ (1 cm) < 中央部のみ (2 cm) < 端まで (1 cm)
- ③ 主翼の両端を折り曲げると揚力が上がるが、主翼の前後に入れる折り込みと組み合わせると揚力の上昇以上に空気抵抗が強くなり、飛距離も伸びず、挙動も不安定になる。

					• –	- /							
	A 1	cm折れと端	岩折れ	B 2	cm折れと端	岩折れ	С	C 端まで1cm		D 端まで1cmと端折れ			平均值
cm	①前	②後	③前後	4前	⑤後	⑥前後	⑦前	8後	9前後	⑩前	①後	12前後	
1回目	280	273	337	367	357	252	428	296	455	210	448	373	
2回目	277	261	372	321	294	350	393	298	414	360	394	411	
3回目	215	400	248	374	450	404	384	340	410	306	415	359	
4回目	396	340	306	273	390	382	251	400	463	337	414	395	
5回目	365	256	372	262	394	326	254	354	443	403	314	332	
6回目	391	366	353	251	300	335	382	232	384	297	338	309	
7回目	358	292	349	468	251	307	365	312	460	380	291	380	
8回目	205	303	288	342	364	323	337	453	471	323	384	368	
9回目	330	280	290	449	413	394	271	542	394	247	380	310	
10回目	270	351	417	394	413	324	394	481	397	364	415	280	
平均	308.7	312.2	333.2	350.1	362.6	339.7	345.9	370.8	A29 1	3227	379 3	351.7	350 5

12タイプのプレーンの記録を総合的に比べてみると・・・

・・・平均値以上、

417

248

169

468

251

217

450

251

199

252

152

400

256

144

205

191

最大値

最小値

最大値-最小値

· · · 最高値

251

177

542

232

310

471

384

87

403

210

193

448

291

157

280

436.5

259.25

177.25

A よりも、B、C、D の値が高くなっていることが分かります。特に、D や、C が高い値を出していることが分かります。特に、D よりも C の方が最高値である赤枠を全て記録していることからも、飛距離が伸びている順位は・・・

第1位 C 第2位 D 第3位 B 第4位 A になりました。

(4) 課題4 12タイプのプレーンを総合的に比べると、どの改造が効果的なのか。

【方法】 動力ありの状態で、屋外で12タイプを飛ばし、その挙動や安定性についての比較をする。 ○動力あり

挙動	上昇(中)	上昇(中)	上昇(強)	水平	上昇(中)	上昇(強)	水平	下降気味	水平	水平	上昇(強)	上昇(強)	
安定性	中	低	中	中	中	中	やや低	低	古回	回	中	中	

【水平に安定して飛ぶプレーンのランキング】

<第1位> ⑨ 9号機:主翼の両端(前後)まで1cmの折り込みを入れる。

この機体は、「動力無し」の時の飛距離の平均 値が一番高く、最大値一最小値の差もダントツで 小さかったです。飛距離と安定感を両立した、と ても良い改造になりました。

<第2位> ④ 4号機:主翼の中央(前)に2cmの折り込みを、主翼の両端を曲げる。

この機体は、「動力無し」の時の飛 距離は平均 的で、安定性もあまり高くなかったのですが、「動 力あり」になると飛び方が軽くなり、バランスの 良い機体だと思いました。

<第3位> ⑦ 7号機:主翼の両端(前)まで1cmの折り込みを入れる。

第3位は、7号機でした。4号機と同じように「動力無し」の飛距離の平均的でしたが、「動力あり」では水平にスーッと飛びました。少し安定感は不安がありました。

【高く安定して飛ぶプレーンのランキング】

<第1位> (I) 11号機:主翼の両端(後)まで1cmの折り込みを入れる。

この機体は、「動力無し」の飛距離の平均値が 全体でも2位でした。また、最大値、最小値、最 大値一最小値の差のどれもが平均以上で、安定 していました。

<第2位> ⑫ 12号機:主翼の両端(前後)まで1cmの折り込みを入れる。

この機体は、「動力無し」で、最大値-最小値の差が⑪よりも小さく、飛距離のバラつきが少なかったです。「動力あり」でも、揚力の強さから高く上昇してよく飛びました。

<第3位> ⑤ 5号機:主翼の中央(後)に2cmの折り込み、主翼の両端を曲げる。

第3位は、5号機でした。「動力無し」で、平均以上の項目が多く、飛距離のバラつきもかなり少ない機体でした。「動力あり」では、飛び方が軽く、ゆるやかに上昇しました。

4 感想

今回の研究を通して、主翼の形を変えていくと、プレーンの動きがどのように変わっていくのか、その形と動きの関係について、かなり分かったと思います。

プレーンを水平に飛ばすためには、次のような主翼の形にするとよいと分かりました。

- ① 主翼の前の部分に折り込みを入れる。
- ② 折り込みをできるだけ細長く入れる。
- ③ 両端は折らない方がいい。

プレーンを上昇させるためには、次のような主翼の形にするとよいと分かりました。

- ① 主翼の後ろの部分に折り込みを入れる。
- ② 主翼の端まで、折り込みを細長く入れた方がよい。
- ③ 主翼の両端は折った方がいい。

今回、プレーンを大量に購入して、12種類の加工をしました。加工をするときには、何回も失敗してうまくいかないこともありました。しかし、丁寧に作っていくことで、研究に使える個性的なプレーンをたくさん作ることができました。

研究をしていく中で、「動力あり」でも「動力無し」でも、どちらも安定して飛ばすことができる形を見つけることができました。家の中、無風の状態で研究するのはとても暑く、細い廊下で飛ばすのは失敗も多くて苦労しました。

実験全体を振り返って、加工を失敗したり、うまく飛ばせなかったりすることもあって大変でしたが、最終的に自分が追究したいことがはっきりしたので、すっきりしました。

今年の研究から、まだまだ追究してみたい内容があります。

- ① ゴムの巻き数を増やしたり減らしたりすると、動きはどう変わるのか。
- ② 揚力や空気抵抗について分かったことを生かして、プレーンの形を大胆に変える。
- ③ 今年の研究は、折り込みが1 cmや2 cmだったので、もうすこし細かく折り込みの条件を変えてみる。
- 4) 尾翼に加工を加えると、どのような動きになるのか。

このように、まだまだ知りたいことがたくさん生まれてきます。インターネットで調べると、世界には本当にいろいろな形をした飛行機があります。中には、「これが飛行機なの?」とか「本当にこんな形で飛ぶの?!」と思うような飛行機も存在します。

今年の研究では、かなりうまく揚力の強さを調節できるようになったと思います。これで、プレーンに大きな加工をして重さが増えても、うまくバランスを取ることができるのではないかと思っています。これからも自分の疑問を追究して、プレーンに詳しくなっていきたいと思います。