赤い球と青い球を並べる不思議
円周上に、5個の赤い球と7個の青い球を並べるとき、 円周は並べられた球によって12個の弧に分けることができる。 このとき、球をどのように並べても、12個の弧のうち 両端の球の色が異なる弧の個数は、必ず偶数になることを説明しなさい。